Skip to main content

knowledge seeker

How to install "SQLMAP" in your windows terminal

  Steps for the installation: Download the  python  from  https://www.python.org/downloads/  and install it after completion of the downloading. Download the  sqlmap  zip file from  https://sqlmap.org/  and extract the downloaded zip folder after completion of the downloading. Open the extracted zip file of the sqlmap and access the  command prompt  from the same path. Type  python ./sqlmap.py  in the command prompt and   press  enter . YOU'RE DONE.

black hole

 

කළු කුහර


කළු කුහරයක් යනු කිසිදු පදාර්ථයකට මෙන්ම ආලෝකයට පවා පිටවිය නොහැකි අභ්‍යවකාශයේ ප්‍රදේශයකි. එය ඉතාමත් ඝන වූ ස්කන්ධයක් විසින් අවකාශ-කාල විරූපී කිරීමේ ප්‍රතිඵලයකි. කළු කුහරය වටා පවතින්නේ හඳුනා ගත නොහැකි, සිද්ධි ක්ෂිතිජය යනුවෙන් හැඳින්වෙන, නැවත නොපැමිනී‍මේ සීමාව ලකුණු කරන මතුපිටයි. එය කළු ලෙස හඳුන්වන්නේ එය මතට පතිත වන කිසිදු විද්‍යුත් චුම්භක තරංගයක් හෝ අංශුවක් පරාවර්තනය නොකර සම්පූර්ණයෙන් අවශෝෂණය කරගන්නා නිසාය. (තාප ගති විද්‍යාවේ එන කෘෂ්ණ වස්තු (Black Body) වැනිය).[1] ක්වොන්ටම් විද්‍යාවට අනුව කළු කුහර, සීමිත උෂ්ණත්වයකින් යුතු වස්තුවක් මෙන්, හෝකින් කිරණ විහිදුවයි. මෙම උෂ්ණත්වය කළු කුහරයේ ප්‍රමාණය අනුව අඩු වන බැවින් විශාල ස්කන්ධයකින් යුතු කළු කුහර නිරීක්ෂණය කිරීම අපහසුය.එය අදෘශ්‍ය වුවත්, වෙනත් පදාර්ථ සමග සිදුවන අන්තර්ක්‍රියා මගින් කළු කුහර හඳුනාගත හැකිය. අවකාශයේ ප්‍රදේශයක් වටා පරිභ්‍රමණය වන තරු පොකුරක චලන රටා අධ්‍යනය කිරීමෙන් කළු කුහරයක පිහිටීම හඳුනාගත හැකිය. එමෙන්ම, තරු යුග්මයකින් විශාල කළු කුහරයකට පදාර්ථය ඇදගන්නා විට, එම වායු සර්පිලාකිරව හැඩගැසී, අධි උෂ්ණත්වයකට භාජනය වී නිකුත් කරන විකිරණය, ප්‍රථිවි-ගත දුරෙක්ෂක මගින් හඳුනාගත හැක.

තාරකා විද්‍යාඥයින් විසින් කළු කුහර තිබිය හැකි ස්ථාන විශාල ප්‍රමාණයක් හඳුනාගෙන ඇති අතර, චක්‍රාවාට ම්‍ධ්‍යයේ supermassive කළු කුහර පැවතිය හැකි බවට සාධක සොයාගෙන ඇත. ක්‍ෂිර පථය මධ්‍යයේ Sagittarius A* ප්‍රදේශ‍යේ, සූර්ය-සකන්ධ මිලියන 2කට අධික සුපිරි-විශාල කළු කුහරයක් (Supermassive Black Hole) පවතින බවට, 1998 වර්ශයේදී, විද්‍යාඥයින් හට ශක්තිමක් සාධක හමුවුනි. නමුත් මෑතකදි කරන ලද පරීක්ෂන වලට අනුව මෙය සූර්ය-සකන්ධ මිලියන 4කට අධික විය යුතු බව සොයාගෙන ඇත.

ඉතිහාසය[සංස්කරණය]

Schwarzschild black hole
පසුතලයේ ඇති මන්දාකිණියක දර්ශනය කළු කුහරයක ගුරුත්ව කාච (gravitational lensing) වීමකට භාජනය වූ විට දැකිය යුතු ආකාරය (පරිගණක මගින් නිර්මාණය කිරීමක්) (click here for larger animation)

ඉතාමත් ඝන වස්තු මගින් ආලෝකයට පවා පිටවීමට නොහැකි අදහස මුලින්ම ඉදිරිපත් වූවේ භු විද්‍යාඥ ජෝන් මිසෂල් විසින් හෙන්රි කැවෙන්ඩිශ් හට 1783දී ලියූ ලිපියකිනි:

If the semi-diameter of a sphere of the same density as the Sun were to exceed that of the Sun in the proportion of 500 to 1, a body falling from an infinite height towards it would have acquired at its surface greater velocity than that of light, and consequently supposing light to be attracted by the same force in proportion to its vis inertiae, with other bodies, all light emitted from such a body would be made to return towards it by its own proper gravity.

—ජෝන් මිෂෙල්[2]

1796දී ගණිතඤ පියර්-සයිමන් ලා‍ප්ලේස්, එම අදහසම, ඔහුගේ Exposition du système du Monde ග්‍රන්ථයේ පළමුවන සහ දෙවන සංස්කරණ වලින් ඉදිරිපත් කර තිබුනි (පසු සංස්කරණ වලින් එය ඉවත් කෙරිණි). [3][4] එවන් අඳුරු තාරකා පිළිබඳ අදහස 19 ශතකයේ විශාල වශයෙන් ප්‍රතික්ෂේප විණි. එම කාලයේ ගුරුත්වාකර්ශෂණය මගින් ආලෝකයට බලපෑම් කල නොහැකි බවට විශ්වාස කෙරිණි.

සාමාන්‍ය සාපේක්ෂතාවාදය[සංස්කරණය]

1915 දී ඇල්බට් අයින්ස්ටයින් විසින් සාමාන්‍ය සාපේක්ෂතාවාදය ඉදිරිපත් ‍කලේ ගුරුත්වාකර්ෂණය ආලෝකයේ ගමන් මාර්ගයට බලපෑම් කරන බව පෙන්වා දීමෙන් පසුවය. ඉන් මාස කිහිපයකට පසුව Karl Schwarzschild විසින් ලක්ෂ්‍ය-ස්කන්ධයක සහ ගොලීය ස්කන්ධයක ගුරුත්වාකර්ෂණයට විසඳුමක් ලබා දුන්නේය.[5] තවත් මාස කිහිපයකට පසු Schwarzschild සහ Hendrik Lorentz ගේ ශිෂ්‍යයෙකු වූ Johannes Droste, තනි තනිවම ඒවාගේ ලක්ෂණ පිළිබඳව වැඩිදුර ලිව්වෝය.[6] මෙම විසඳුම වර්තමානයේ ෂ්වාස්චයිල්ඩ් අරය ලෙස හැඳින්වෙන සුවිශේෂී හැසිරීමක් ඇති අතර එය ඒකීය බවට පත් විය, එයින් අදහස් වන්නේ අයින්ස්ටයින් සමීකරණවල සමහර යෙදුම් අනන්තය බවට පත්ව ඇති බවයි. මෙම පෘෂ් of යේ ස්වභාවය එකල එතරම් අවබෝධ වී නොතිබුණි. 1924 දී ආතර් එඩින්ග්ටන් පෙන්නුම් කළේ ඛණ්ඩාංක වෙනස් වීමෙන් පසුව ඒකීයභාවය අතුරුදහන් වූ බවයි (එඩින්ටන් ඛණ්ඩාංක බලන්න), නමුත් 1933 වන තෙක් ජෝර්ජස් ලෙමාට්‍රේට මෙය තේරුණේ ෂ්වාස්චයිල්ඩ් අරයෙහි ඒකීය භාවය භෞතික නොවන ඛණ්ඩාංක ඒකීය භාවයක් බව වටහා ගැනීමටය..[7]

891/5000

1931 දී සුබ්රමනියම් චන්ද්රසේකර විසින් සාමාන්ය සාපේක්ෂතාවාදයෙන් ගණනය කරන ලද අතර ඉලෙක්ට්රෝන පරිහානිගත ද්රව්ය 1.04 ස්කන්ධ ස්කන්ධයන් (චන්ද්රසේකර සීමාව) බිඳවැටෙනු ඇත. ඔහුගේ තර්කවලට එඩින්ටන් සහ ලෙව් ලන්ඩෝ වැනි බොහෝ සමකාලීනයන් විසින් විරුද්ධ වූ අතර, තවමත් නොදන්නා යාන්ත්රණයක් බිඳවැටීම නතර කරන බවට තර්ක කළහ. ඒවා අර්ධ වශයෙන් නිවැරදියි: චන්ද්රසේකර් සීමාවට වඩා කුඩා විශාල වාමනාවක් නියුට්රෝන තාරකාවක බිඳ වැටෙනු ඇත, පාවුලි බැහැර කිරීමේ මූලධර්මය නිසා ස්ථායී වේ. එහෙත් 1939 දී රොබට් ඔප්න්හෙමාර් සහ අනෙකුත් අය අනාවැකි පළ කළේ සූර්ය ස්කන්ධ 3 ක් පමණ වන නියුට්රෝන තාරකා (ටෝල්මෑන්-ඔප්න්හයිමර්-වොල්කොෆ් සීමාව) කළු කුහර බවට කඩා වැටෙනු ඇති අතර, භෞතික විද්යාවේ කිසිදු නීතියක් මැදිහත් වීමට ඉඩ නොතබන බව නිගමනය කලේය. අඩුම තරමින් සමහර තරු කළු කුහර දක්වා කඩා වැටෙනු ඇත

[8].ඒවා අර්ධ වශයෙන් නිවැරදි ය: චන්ද්‍රසේකර් සීමාවට වඩා තරමක් විශාල සුදු වාමන නියුට්‍රෝන තාරකාවකට කඩා වැටෙනු ඇත. එය පෝලි බැහැර කිරීමේ මූලධර්මය නිසා ස්ථායී වේ. නමුත් 1939 දී රොබට් ඔපන්හෙයිමර් සහ තවත් අය අනාවැකි පළ කළේ ආසන්න වශයෙන් සූර්ය ස්කන්ධ තුනකට වඩා වැඩි නියුට්‍රෝන තාරකා (ටෝල්මන්-ඔපන්හෙයිමර්-වොල්කොෆ් සීමාව) චන්ද්‍රසේකර් විසින් ඉදිරිපත් කරන ලද හේතු නිසා කළු කුහර වලට කඩා වැටෙනු ඇති අතර භෞතික විද්‍යාවේ කිසිදු නීතියක් මැදිහත් නොවන බවත් නිගමනය කළ බවත්ය. අවම වශයෙන් සමහර තරු කළු කුහර වලට කඩා වැටීම නවත්වන්න[9]

ඔපන්හෙයිමර් සහ ඔහුගේ සම කර්තෘවරු ෂ්වාස්චයිල්ඩ් අරයෙහි මායිමේ ඇති ඒකීයභාවය අර්ථකථනය කළේ මෙය කාලය නතර වූ බුබුලක මායිම බවයි. මෙය බාහිර නිරීක්ෂකයින් සඳහා වලංගු දෘෂ්ටි කෝණයකි, නමුත් වැරදි නිරීක්ෂකයින් සඳහා නොවේ. මෙම දේපල නිසා, කඩා වැටුණු තාරකාවන් "ශීත කළ තරු" ලෙස හැඳින්වේ.[10] මක්නිසාද යත් බාහිර නිරීක්ෂකයෙකුට තාරකාවේ පෘෂ් surface ය කාලයාගේ ඇවෑමෙන් ශීත කළ බව පෙනෙනු ඇත. මෙය නූතන කළු කුහරවල දන්නා දේපලකි, නමුත් ශීත කළ තාරකාවේ මතුපිටින් ලැබෙන ආලෝකය ඉතා වේගයෙන් රතු පැහැයට හැරෙන අතර කළු කුහරය ඉතා ඉක්මණින් කළු පැහැයට හැරේ. බොහෝ භෞතික විද්‍යා ists යන්ට ෂ්වාස්චයිල්ඩ් අරය තුළ රැඳී සිටීම පිළිබඳ අදහස පිළිගැනීමට නොහැකි වූ අතර වසර 20 කට වැඩි කාලයක් තිස්සේ මෙම විෂය කෙරෙහි එතරම් උනන්දුවක් නොතිබුණි.

ස්වර්ණමය යුගය[සංස්කරණය]

hello hello 1958 දී , ඩේවිඩ් ෆින්ස්කෙලේෂ්ටින් අවබෝද කරගත්ත Schwarzschild r = 2m [in geometrized units, i.e. 2Gm/c2] as an event horizon, "a perfect unidirectional membrane: causal influences can cross it in only one direction".[11] This did not strictly contradict Oppenheimer's results, but extended them to include the point of view of infalling observers. Finkelstein's solution extended the Schwarzschild solution for the future of observers falling into the black hole. A complete extension had already been found by Martin Kruskal, who was urged to publish it.[12]

These results came at the beginning of the golden age of general relativity, which is marked by general relativity and black holes becoming mainstream subjects of research. This process was helped by the discovery of pulsars in 1967,[13][14] which were within a few years shown to be rapidly rotating neutron stars. Until that time, neutron stars, like black holes, were regarded as just theoretical curiosities; but the discovery of pulsars showed their physical relevance and spurred a further interest in all types of compact objects that might be formed by gravitational collapse.

In this period more general black hole solutions where found. In 1963, Roy Kerr found the exact solution for a rotating black hole. Two years later Ezra T. Newman found the axisymmetric solution for a black hole which is both rotating and electrically charged.[15] Through the work of Werner Israel,[16] Brandon Carter,[17][18] and D. C. Robinson[19] the no-hair theorem emerged, stating that a stationary black hole solution is completely described by the three parameters of the Kerr–Newman metric; mass, angular momentum, and electric charge.[20]

For a long time, it was suspected that the strange features of the black hole solutions were pathological artefacts from the symmetry conditions imposed, and that the singularities would not appear in generic situations. This view was held in particular by Belinsky, Khalatnikov, and Lifshitz, who tried to prove that no singularities appear in generic solutions. However, in the late sixties Roger Penrose[21] and Stephen Hawking used global techniques to prove that singularities are generic.[22]

Work by James Bardeen, Jacob Bekenstein, Carter, and Hawking in the early 1970s led to the formulation of the laws of black hole mechanics.[23] These laws describe the behaviour of a black hole in close analogy to the laws of thermodynamics by relating mass to energy, area to entropy, and surface gravity to temperature. The analogy was completed when Hawking, in 1974, showed that quantum field theory predicts that black holes should radiate like a black body with a temperature proportional to the surface gravity of the black hole.[24]

The term "black hole" was first publicly used by John Wheeler during a lecture in 1967. Although he is usually credited with coining the phrase, he always insisted that it was suggested to him by somebody else. The first recorded use of the term is in a 1964 letter by Anne Ewing to the American Association for the Advancement of Science.[25] After Wheeler's use of the term, it was quickly adopted in general use.

ගුරුත්වාක්ෂණ හැකිළීම[සංස්කරණය]වර්ධනය[සංස්කරණය]

කළු කුහරයක් ඇතිවීමෙන් පසු එය පිටතින් පදාරථ උරා ගනිමින් වර්ධනය වීමට පටන් ගනී. ඕනෑම කළු කුහරයක් දිගින් දිගටම අවට ඇති වාතය සහ අභ්‍යවකාශ දූවිලි මෙන්ම සර්වව්‍යාප්ත විශ්ව පසුබිම් විකිරණයද උරා ගනී. අධි-ස්කන්ධ කළු කුහර වරධනය වීමට ප්‍රාථමික දායක්ත්වය ලැබී ඇත්තේ මෙම කියාවලිය මගිනි.[27] ගෝලාකාර තරු පොකුරු වල මධ‍්‍යම ප්‍රමාණයේ කළු කුහර සෑදී ඇත්තේද මෙමගින් බවට යෝජනා වී ඇත.[28]

කළු කුහරයකට තාරකාවක් මෙන්ම තවත් කළු කුහරයක් සමග බද්ධ විමේ හැකියාවක් ඇත. කුඩා වස්තු කීපයක එකතුවකින් සෑදී ඇති අධි-ස්කන්ධ කළු කුහරවල ප්‍රථම අවදියේදී ඒවා වර්ධනය වීමට මෙවැනි දෑ වැගදත් වී ඇති බවට විශ්වාස ‍කෙරෙයි.[27] සමහරක් මධ‍්‍යම ප්‍රමාණයේ කළු කුහර ආරම්භය වීම සඳහා දායක වූ බවටද මෙම ක්‍රියාවලිය යෝජනා වී ඇත.[29][30]

ගුරුත්වාකර්ෂණ හැකිලීම සිදුවන්නේ යම් වස්තුවක අංශු අතර ඇතිවන ගුරුත්වාකර්ණයට ඔරොත්තු දීමට තරම් එහි අභ්‍යන්තර පීඩනය ‍ප්‍රමාණවත් නොවීමය. තාරකාවකට මෙය සිදුවන්නේ න්‍යෂ්ටික-විලයනය මගින් එහි උෂ්ණත්වය පවත්වා ගැනීමට තරම් එහි ඉන්ධන ප්‍රමාණවත් ‍නොවීම හෝ පිටතින් අමතර පදාර්ථයක් එක්වී එහි ස්කන්ධය වැඩි වීම නිසාය. මෙවන් අවස්ථාවකදී තාරකාවේ ගුරුත්වය මගින් තමාවම හකුලවාගැනීම වැලැක්වීමට එහි උෂ්ණත්වය අසමත් වෙයි.[26]


Comments

Popular posts from this blog

How to install "SQLMAP" in your windows terminal

  Steps for the installation: Download the  python  from  https://www.python.org/downloads/  and install it after completion of the downloading. Download the  sqlmap  zip file from  https://sqlmap.org/  and extract the downloaded zip folder after completion of the downloading. Open the extracted zip file of the sqlmap and access the  command prompt  from the same path. Type  python ./sqlmap.py  in the command prompt and   press  enter . YOU'RE DONE.

ලෝකයේ ඇති අභිරහස්ම දූපත්

  13. Palmyra Atoll (පැල්මයිරා දුපත්)   මෙම හස්තය හවායි දූපත් වලට දකුණින් පිහිටා ඇති අතර එය ඇමරිකාවට අයත් වේ. “මේ ස්ථානය භූතයන්ගෙන් පිරී තිබේ” කියා ඔවුහු පවසති. සියවස් ගණනාවක් පුරා දූපත කුප්‍රකට වූයේ එහි වෙරළ ආසන්නයේ ඇති බොහෝ නැව් සුන්බුන් නිසාය. එක් අනතුරකින් මියගිය නැවියන්ගේ ආත්මයට ශාප කරන ලද සැඟවුණු නිධානයක් පිළිබඳ ඕපාදූප රාශියක් ආරම්භ විය. නැව් සුන්බුන් වලට අමතරව, මෙම ස්ථානය නැතිවූ නැව් සඳහා ප්‍රසිද්ධය. 1855 දී ගල්පරයක් සමඟ යාත්‍රාවක් ගැටී ඇති බව වාර්තා වන නමුත් බේරාගත් අය එම ස්ථානයට ළඟා වූ විට නැව සහ නැවියන් යන දෙකම සොයා ගැනීමට නොහැකි විය. දෙවන ලෝක යුද්ධ සමයේදී මෙම දූපත පාලමක් ලෙස භාවිතා කරන ලදී. එහි සේවය කරන සොල්දාදුවන් නොදන්නා සම්භවයක් ඇති බවට භීතියට පත්ව ඇති අතර ඔවුන්ගෙන් සමහරක් සියදිවි නසා ගත්හ. 12. Snake Island බ්‍රසීලයට නුදුරින් පිහිටි මෙම ආකර්ශනීය දූපතේ සර්පයන් විශාල ප්‍රමාණයක් සිටින අතර ඔවුන් හැර වෙනත් කිසිවක් නොමැති අතර සමහර දුර්ලභ පක්ෂීන් එම ප්‍රදේශයේ වාසය කරයි. දිවයිනේ වාසය කරන සර්ප විශේෂ ලෝකයේ වඩාත්ම විෂ සහිත යැයි නිල වශයෙන් වර්ගීකරණය කර ඇත; එක් කටගැස්මකින් පස...

අන්තර්ජාතික අභ්‍යාවකාශ මධ්‍යස්ථානය (International Space Station /ISS)

 අන්තර්ජාතික අභ්‍යාවකාශ මධ්‍යස්ථානය   ජාත්‍යන්තර අභ්‍යවකාශ මධ්‍යස්ථානය අභ්‍යවකාශ ආයතන පහක හවුල් ව්‍යාපෘතියකි; ඒ නාසා ආයතනය, රුසියානු අභ්‍යවකාශ ඒජන්සිය, Japan Aerospace Exploration Agency, කැනේඩියානු අභ්‍යවකාශ ඒජන්සිය සහ යුරෝපීය අභ්‍යවකාශ ඒජන්සිය යන ආයතන පහයි කක්ෂ උස :  408 km කක්ෂය මත වේගය :  7.66 km/s දියත් කරන දිනය :  1998 නොවැම්බර් 20 දිග :  මි. 73.0 (අඩි 239.4) නිෂ්පාදකයන් :  නාසා ,  තවත්